
D-RI30 765 SYNTHETIC SEISMOGRAM CALCULATIONS FOR TWO-DIMENSIONAL i/I
VELOCITY MODELS(1J) PURDUE UNIV LAFAYETTE IN DEPT OF
GEOSCIENCES L W BRAILE ET AL. 20 MAY 83 TR-1-83-ONR

UNCLASSIFIED N@8@4-82-K-0033 F/G 8/i N

EEhEEEEEEoiE
EEmhEmhEmhohEE
EEEEEEEEmmhhhEE
smEohhhEEohhE
smEEEEEEmhohEI
EEEOELEEE



*11.

1.5 lL91.

MICOCPYREOLTIN ES3 CAR

NA"A BREU f TADAD1936



I

~

-~

'2

QfI~ ~ - -'

g
-~ I

,-"*-~<

~

~- *~

-I~ C

- ~uTul

~t4L~S usa
A

7 ~ 28 Wa L1

* 0~ * *.t ~ ~*~b * - -
*...........* ....



Department of Geosciences

PURDUE UNIVERSITY

Final Technical Report

for the

OFFICE OF NAVAL RESEARCH

Contract No. NOOO14-82-K-0033

SYNTHETIC SEISMOGRAM CALCULATIONS

FOR TWO-DIMENSIONAL VELOCITY MODELS

by

Lawrence W. Braile, Chao Sheng Chiang,
and Carl R. Daudt

Technical Report No. ONR-1-83

Project Period 10/1/81 to 3/30/83

Report Date 5/20/83 .

.. o



17,.. -1. 7 2..4

!9CURITY CLASSIFICATION OF THIS PAGE ("o1an Doat vmmtaed. __ _

REPORT DOCUMENTATION PAGE 1EFORE COMPLTNG FORM
I. REPOR~MtlER GOVT ACCESSION NO. S./RECIPIENT'S CATALOG NUMBER

ONR~i836"ID~/c'7 __________

4. TITLE (md Sub~tla) 1. TYPE OF REPORT & PERIOD COVERED

SYNTHETIC SEISMOGRAM CALCULATIONS FOR TWO- Final Technical1011/81 to 3/3o,/83 -:
DIMENSIONAL VELOCITY MODELS 01 O 3/30/83

6. PERFORMING ORG. REPORT NUMBER
ONR-1-83

7. AUTHOR(@) S. CONTRACT OR GRANT NUMEDR(S)

Lawrence W. Braile, Chao Sheng Chiang, and N00014-82-K-0033
Carl R. Daudt

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10- PROGRAM ELEMENT. PROJECT, TASK

AREA a WORK UNIT NUM@ERSDepartment of Geosciences
Purdue University
West Lafayette, IN 47907

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ONR Resident Representative 5/20/83
Ohio State University Research Center ,a. NUMIIER OIPAGES
1314 Kinnear Road, Columbus, OH 43212

14. MONITORING AGENCY NAME & ADDRESS(if dlflemt Ima C m, tI in Office) IS. SECURITY CLASS. (of this M1ert)

Unclassified
Ila. DCSLASSI FICATION/ DOWNGRADING

SCHEDULE NIA

16. DISTRIIUTION STATEMENT (of We. Rept-)

Unlimited

17. DISTRIBUTION STATEMENT (of the abdrect entered In lock 20. It EMaInt Fm Rspen)

Approved for public release: distribution unlimited

1S. SUPPLEMENTARY NOTES

Synthetic Seismograms, Seismic Modeling, Finite Difference, Ray Theory

19. KEy WORDS (CentmM. an Dover. Aid. it 11cemore OWd Idsnt by bjeak nmb.)

.ASS ACT (Ca n Fewerv" aide It nea0ee6mv and Idsntlf' by blok mm be)

tA variety of synthetic seismogram methods for laterally heterogeneous
earth models have been developed and tested. Explicit finite difference
methods for elastic wave propagation generally display high accuracy, but
are limited in their application due to extensive computer time and storage
requirements. Implicit finite difference methods may be able to realize
a factor of eight improvement in computer time and a factor of four improve- - -
ment in computer storage requirements as compared to explicit methods. The

DD I'JOA"72 473 EDITION OF I NOV 65 IS OBSOLETE
S/W 0102-LF-014.6601 

M td
SECURITY CLASSIFICATION OF THIS PAGE (O1ham Data Eala;olB

• :: ,' .,..' +',,, • . ... .. . .. . . -.. . .. . . .. ..... ... . . .-.. .



SECURITY CLASSIFICATION OF THIS PAGE (l"an Date Entered)

20.

$mplicit methods of synthetic seismogram calculation are less well developed
and are more difficult in the application of absorbing boundary conditions.
Approximate methods using the scalar wave equation may also be useful for
preliminary modeling of seismic data. A ray-theoretical method using ray
tracing and disk ray theory (DRT) synthetic seismogram synthesis has been
developed and compared to calculations using reflectivity (for l-D) and
finite difference (for 2-D) methods. The DRT methcd is fast and reasonably
accurate making it very useful for routine modeling of 2-D seismic data. Its
principal problem is the difficulty in tracing rays in certain complex geo-
logic models. Various calculations of synthetic seismograms in laterally
heterogeneous models and comparison with homogeneous models indicate the
importance of including lateral heterogeneity, elastic wave propagation,
proper source design and absorption in seismic modeling./

SECURITIY CLASSIICATION oFr rMIS PAGE('Ibe 000 JntefcNd)

.97

L--q

F° ; ,i'', '/: 'J','.' ''-'.''-'' ''' '; " ':' ' " " S" ' u f "tlr CL S "IC TO 0P1H-" PAGi" i. " D ." I Ie . ..



1

ABSTRACT

A variety of synthetic seismogram methods for laterally heterogeneous

earth models have been developed and tested. Explicit finite difference

methods for elastic wave propagation generally display high accuracy, but

are limited in their application due to extensive computer time and storage

requirements. Implicit finite difference methods may be able to realize

a factor of eight improvement in computer time and a factor of four improvement

in computer storage requirements as compared to explicit methods. The

implicit methods of synthetic seismogram calculation are less well developed

and are more difficult in the application of absorbing boundary conditions.

Approximate methods using the scalar wave equation may also be useful for

preliminary modeling of seismic data. A ray-theoretical method using ray

tracing and disk ray theory (DRT) synthetic seismogram synthesis has been

developed and compared to calculations using reflectivity (for l-D) and

finite diffevence (for 2-D) methods. The DRT methcd is fast and reasonably

accurate making it very useful for routine modeling of 2-D seismic data.

Its principal problem is the difficulty in tracing rays in certain complex

geologic models. Various calculations of synthetic seismograms in laterally

heterogeneous models and comparison with homogeneous models indicates the

importance of including lateral heterogeneity, elastic wave propagation,

proper source design and absorption in seismic modeling.

N
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INTRODUCTION

We have been reviewing a variety of synthetic seismogram techniques

for calculation in laterally inhomogeneous models for a number of years.

In this report, we review progress on a variety of techniques including
A

disk ray theory (DRT) based on ray theoretical methods and finite

difference (FD) calculations which are based on direct numerical

solutions to the seismic wave equation in two-dimensional laterally

heterogeneous media. Both implicit and explicit formulas for finite

difference calculations have been studied and we have utilized both the

acoustic (scalar) and elastic wave equations for our finite difference

methods. A review of our previous work in the field of synthetic

seismogram modeling studies is included in Department of Geosciences,

Purdue University, Report No. ONR-1-82 which was produced under contract

with the Office of Naval Research, Contract No. N00014-75-C-0972. In

this previous report, we described synthetic seismogram modeling

studies including one-dimensional and preliminary work with two-dimen-

sional models. In this report, we show a variety of synthetic seismogram

calculations primarily for laterally heterogeneous models which illustrate

the importance of lateral inhomogeneities in seismic wave propagation

and compare a variety of approaches to synthetic seismogram calculations.

Because these calculations can be extremely time consuming and require

elaborate computer programs and extensive computer time and storage,

we have spent considerable time on attempting to find more rapid

methods which may be approximate, but would provide for preliminary

modeling in two dimensions such that routine interpretation could

utilize the vast and approximate techniques with final confirmation

and checking relying on the more expensive and more accurate methods.

Most of our examples are for wave propagation and earth models

'- '4 * * * * * ... * . . . .... . * . . ., . . ..4 . . .- -4 . . . . -, . -' -. .- " "-, " "
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corresponding to crustal seismology studies. However, the techniques

that we describe are basically scale independent and can be used for

studies of seismic wave propagation in models corresponding to shallow

engineering studies (with depth of penetration of several tens of

meters), to crustal studies (with depth of penetration of several tens

of kilometers), and to whole earth models with propagation through the

entire earth. Thus far our calculation techniques are limited to two-

dimensional propagation and flat earth models, although it is conceivable

that three-dimensional methods and spherical earth geometry could be

utilized in the future.

EFFECTS OF ACOUSTIC VERSUS ELASTIC WAVE PROPAGATION

AND ANELASTICITY (Q-)

One approach to approximate calculation of synthetic seismograms

in laterally inhomogeneous media is to utilize an acoustic wave

equation approach as a preliminary modeling technique. An acoustic

finite difference formulation for example is considerably faster than

the equivalent elastic problem because of the relative simplicity of

the scalar wave equation as compared to the complete elastic wave

equation in two dimensions. In utilizing the scalar wave equation,

the complete nature of seismic waves including the presence of shear

waves and the possibility of P-S converted phases is not included. In

addition, some of our finite difference methods utilize a perfectly

elastic (infinite Q) calculation in contrast to the more realistic

seismic wave propagation in which variable Q is included. For these

reasons, we have calculated synthetic seismograms for a one-dimensional

model for which the modified reflectivity method can be used to ill-

ustrate the effects of acoustic wave progagation and the effects of

'.
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including Q in the model by comparison with a calculation in which

high Q and elastic propagation in included. Figure 1 illustrates a

seismic record section calculated for an oceanic crustal model in

which elastic wave propagation and high Q values are present. The

model is shown to the left of the record section. The upper layer "s

a 200 m thick water layer in which the shear velocity is set to zero

in the program and a density of 1.0 and a P wave velocity of 1.5 km/s

is assumed. The source is within the water layer at a depth of 100 m.

The source is approximately 10 Hz. Relatively high Q values are assumed

in the sedimentary layer where a strong velocity gradient exists to a

depth of about 4 km and in the oceanic crust and upper mantle beneath.

The seismograms which result from this elastic and high Q calculation

using the modified reflectivity method show a complicated wave pro-

pagation with a variety of P, multiple P, and P-S converted phases with

a range of apparent velocity from the upper mantle (8 km/s) arrivals to

a very low apparent velocity and low frequency arrival near the end of

the seismograms. The high amplitude/high frequency arrival prominent

on all of the seismograms is a water wave arrival with an apparent

velocity of approximately 1.5 km/s. The low frequency arrival which

arrives at slightly later times than the water wave is interpreted to

be a shear wave or surface wave propagating in the sedimentary layer

and coupled to water as an acoustic wave resulting in the low apparent

velocity, low frequency, and obvious dispersion. In order to compare

*the effects of elasticity versus acoustic wave propagation, the identical

model as shown in Figure I was utilized to calculate synthetic seismograms

assuming purely acoustic wave propagation. The record section and the

model are illustrated in Figure 2. Acoustic wave propagation in the

modified reflectivity method is provided for by the transformation
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suggested by Kind (1976). The acoustic seismograms shown in Figure 2

are very different from the synthetics for the elastic model. A water

wave arrival is again present and is in fact stronger than the arrivals

shown for the elastic model. However, most of earlier and higher

apparent velocity phases are either much smaller or absent. In addition,

the low apparent velocity/low frequency arrival is also absent. Finally,

increased numerical noise due to trapping of a large percentage of the

energy in the low velocity portions of the model resulting in large

travel time arrivals and consequent time domain aliasing in the modified

reflectiy method increases the numerical noise shown on the record

section. The effects of Q are illustrated in Figure 3 in which the

same elastic seismic model as shown in Figure 1 was used to calculate

synthetic seismograms. However, the model shown in Figure 3 includes

low Q values in the sedimentary layer and uppermost oceanic crustal

layer. For this record section, all of the same arrivals that were

included in the record section shown in Figure 1 are present, including

the earlier high apparent arrivals, the water wave, and the low frequency/

low apparent velocity arrival. However, all of these phases are signi-

ficantly attenuated and their amplitudes decrease fairly rapidly with

distance due to the low Q values in the upper layers.

These examples serve to illustrate the importance of elastic wave

propagation and the effects of Q in synthetic seismogram modeling. The

elastic versus acoustic assumption appears to be particularly important.

However, perfectly elastic and acoustic models may be useful for

preliminary modeling as long as primary phases are of principle import-

ance. Final interpretation of seismic data for real earth structures

should include elastic wave propagation phenomena and the presence of

Q structure.

.!7
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EXPLICIT FINITE DIFFERENCE METHODS

Explicit finite difference methods involve a direct numerical

solution of the elastic wave equation in two dimensions for laterally

4 heterogeneous media. In the explicit method, finite differences are

used to approximate spatial and temporal derivatives in the elastic

wave equation. Accuracy of the finite difference derivatives require

that approximately 10 points per minimum wavelength of the waves

propagated in the two-dimensional model be utilized. Because the

displacements for time step T + 1 are calculated from two previous

time steps (T and T-l), the time step must be chosen to be very small

in order to maintain stability of the solution in this explicit method.

Finite difference methods have been presented by Boore (1972), Alterman

and Karal (1968) and Kelly et al. (1976). The calculations that we

illustrate here are from the program developed by Mazzella (1979).

A flow chart illustrating the explicit finite difference synthetic

seismogram calculation for acoustic or elastic wave propagation is

shown in Figure 4. An arbitrarily complicated two-dimensional velocity

model is described by a grid of seismic velocities. Source location,

wavelet shape and peak frequency are designed which provide initial

displacements for the iterative finite difference calculation. Displace-

ments must be calculated for each grid point location for each time step

of the model resulting in large grid point and time step loops in the

computer program. Figure 5 illunstrates the calculation of a displace-

ment at a particular grid locatlo, itiliz' , the nine grid points surround-

ing this location at times T and T-i. The spatial derivatives are ob-

tained from the displacements at the nine grid locations at time equal

T. The time derivative is obtained from the displacements at the

grid location for times T and T-l. This process must be repeated for
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all grid locations in the model. The finite difference model is

illustrated in Figure 6. The two-dimensional velocity structure can

be arbitrarly complicated with velocities given at each grid point.

Absorbing boundary conditions (Clayton and Enquist, 1977, 1980 and

Enquist and Majda, 1977) help to attenuate the fictitious reflections

obtained from artifical boundaries of the model. A free surface

boundary condition (Ilan, 1975) is included to account for the free

surface conversion. The two-dimensional equations of motion for

displacement in heterogeneous isotropic media and finite difference

approximations for the explicit case for spatial derivatives and time

derivatives are illustrated in Figure 7. The finite difference

approximations are straight forward, but are reasonably complicated

and lead to a long series of steps in a computer program. Some of the

practical difficulties in applying explicit finite difference synthetic

seismogram calculations are illustrated in Figure 8. Problems include

approximations such as two-dimensionality and requirements of the grid

spacing and time step which are related to the maximum frequency of

waves which are to be propagated in the model. These requirements

generally lead to large computer time and storage needs for calculation

of realistic models.

In order to test our finite difference program, we have calculated

synthetic seismograms using the modified reflectivity method and the

finite difference program for a layer over a half-space model. The

resulting record section (Figure 9) for vertical component seismograms
show good comparison for primary P wave arrivals, multiples, and P-S

conversions. Some discrepancy in surface wave aryrvals is apparent

due to the phase velocity range included in the modified reflectivity

method calculation and due to the presence of some numerical dispersion

t4Sr**. . .; .. .,., . ..*..* .. :.. ... . .......... . .2 > ,j . . ..,., .. . ; L .L.
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in the finite difference calculation for the relatively short wave-

length surface waves due to their low propagation velocity. A more

detailed comparison of the seismograms for the finite difference and

modified reflectivity methods is shown in Figure 10 for distances

of 10, 20, 30 and 40 km. The modified reflectivity seismograms for

these distances are illustrated immediately beneath the finite difference

seismograms. Good amplitude and waveform comparison is seen for all

phases except the surface wave.

The finite difference elastic wave equation method represents an

accurate numerical technique for the calculation of two-dimensional

synthetic seismograms in laterally heterogeneous media. At present,

computer limitations preclude its use in routine modeling of seismic

data. For most models of geophysical and geological interest, the

finite difference calculation of realistic synthetics with the finite

difference program would require computer time on the order of several

hours using the fastest computers available (Cray 1 and Cyber 205)

and in addition would require core storage of greater than a million

words. Therefore, we consider the finite difference approach at the

present time to be primarily of interest for model studies in which

various kinds of wave propagation phenomena can be studied with

seismograms for characteristic models. In addition, the finite

difference program synthetics represent an important check on faster,

but more approximate techniques.

DISK RAY THEORY SYNTHETIC SEISMOGRAM METHOD

A disk ray theory (DRT) synthetic seismogram method for approximate

calculation of seismic wave propagation in laterally heterogeneous elastic

a,



9

and anelastic media has been developed and tested. The disk ray theory

method follows the theory developed by Wiggins and Madrid (1974) and

Wiggins (1976). The technique utilizes ray tracing and complex two-

dimensional velocity and Q models to provide the necessary time distance

and amplitude data to construct synthetic seismograms by a summation

of the contribuitons of the various raypaths. A description of the

technique and some examples of its application are shown in a paper

entitled "An Example of Application of Synthetic Seismogram Modeling

in Two Dimensions" by C.S. Chiang and L.W. Braile. A copy of this

paper is included in the Appendix to this report.

The principal advantage of the DRT synthetic seismogram method is

speed. It is relatively accurate and synthetics can be quickly constructed

for two-(or even three-) dimensional models for which ray tracing can

be performed. The method can include primary P and S phases as well

as multiples (Figure 11). Its principal limitation is that guided or

interference propagation type of phases cannot be included. Surface

waves are not accounted for and some geologic models are difficult or

impossible to trace rays through so that the necessary ray trace input

may not be available for certain physically important phases. An

example of a DRT calculation is illustrated for the model shown in

Figure 12. The seismic raypaths are traced using a ray tracing program

for the phases shown. Amplitude, travel time, raypath parameter and

distance date are then used to construct synthetic seismograms by the

DRT method. For this relatively simple, but important laterally

inhomogeneous fault model, the seismic rays can be traced with high

accuracy and efficiency to produce the data for the DRT seismogram

synthesis. This model, however, illustrates one of the problems with

the DRT method. The seismic phases shown in Figure 12 corresponding
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to the propagation at the bottom of the prominent fault (Phases

Prefl-2 and Ph-2) cannot be traced directly in this model. If one

attempts to trace these raypaths from the source to the bottom of the

fault plane (corner) the raypaths do not refract by Snell's Law to the

received locations as shown. In fact, the lower corner of the fault

represents a diffractor. However, we know from wave theoretical

principals and from a finite difference calculation that the waves

corresponding to these raypaths are physically important and are present

in the seismic wave propagation in this model. Therefore, we were able

to generate these phases by a two step ray tracing procedure. All

other phases were ray traced in the normal method from source to reflecting

or refracting point and then to receiver. However, for these two phases,

rays were traced from the source to the diffraction point (corner at

the bottom of the fault). Then, an artifical source was located at

this corner and caused to generate the phases Prefl-2 and Ph- 2 ' The

travel time and amplitude factors for this artifical diffraction source

were then combined with the raypaths from the source to the corner to

obtain the time distance and amplitude factors necessary for DRT

synthesis for these complicated raypaths. In this way, the correct

wave propagation phenomena were simulated. However, the amplitude

factors which resulted from this calculation were too large of

amplitude for these two phases from the point diffractor. By assuming

that the effective reflection coefficient of the point diffractor at

the corner of the fault was approximately 0.3, seismograms from the

DRT method which compare favorably with finite difference synthetic

were produced (Figure 13). The finite difference and DRT synthetics

for the fault model (INFL-ll) shows excellent comparison for all of

the primary arrivals. Later arrivals (multiple P waves, P-S conversions

........................ . *... . .... . . . .



and surface waves) included in the finite difference calculation are

not included in the DRT synthesis. In addition, the wide angle re-

flection from the upper interface (Phase Prefl-l ) has too large of

an amplitude at large distances for the DRT method. This is a result

of the limitation of ray theory for grazing incidence wave propagation

at low frequencies for thin layers. However, this is not severe

limitation of the DRT method because such arrivals are rarely of

significance anyway because of the lower apparent velocity of such

phases and the presence of attenuation which normally decreases their

amplitudes fairly rapidly. A more detailed comparison of the finite

difference and disk ray theory synthetics for the fault model (INFL-lI)

is shown in Figure 14. Amplitude and wave form character of phases

of interest are nearly identical for the FD and DRT method. Therefore,

we conclude that the DRT method provides a very useful approach to

preliminary modeling of seismic data in two-dimensional or even three-

dimensional media. The technique is fast, reasonably accurate and is

limited only due to the difficulty of tracing rays for certain phases

and certain geological models. We suggest that this technique would

provide a very useful modeling method in which routine ray-tracing

and DRT synthesis can provide comparison with observed seismic data

for two-dimensional velocity structures. For final confirmation or

where the technique is not appropriate, finite difference or other

wave theortical techniques will still be necessary.

FINITE DIFFERENCE SYNTHETIC SEISMOGRAM CALCULATIONS
FOR DISLOCATION SOURCE MODELS.

Explicit finite difference synthetic seismogram calculations

program for dislocations source models has been presented by Espindola

, i• o........ . . o- ..................... •...... .......
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(1979). The technique follows similar methods as illustrated previously

in this report and are also similar to those presented by Mazzella (1979).

However, in this method a skew symmetric coordinate system (Figure 15)

is utilized to provide for a distributed dislocation source which

simulates an earthquake. A dislocation with arbitrary slip function and

source time history is caused to occur at grid points corresponding to

the source fault plane location. Finite difference calculations allow

for propagation of seismic waves away from this distributed source.

The skew symmetric coordinate system is required in order to provide for

parallellism of the grid spacing with the source fault plane. This

program therefore, has an additional advantage over the previously

described finite difference program in that a variety of more realistic

source phenomena can be studies using the finite difference method.

The program of the method still utilizes the explicit approach and

is limited, therefore requiring certain grid point and time step

conditions, necessitating large computer time and storage and is also

limited to a two-dimensional approximation such that the source fault

plane is assumed to extend in the direction perpendicular to the XZ

axis. Examples of synthetic seismogram calculations using this dis-

location finite difference method are shown for a homogeneous half

space model (Figure 16) and a complicated laterally heterogeneous

velocity structure model (Figure 17). A variety of source slip

functions and source time histories for the identical fault geometry

(Figure 18) are also illustrated. Figure 19 shows the seismic ray

paths which are produced by the distributed source dislocation for

a simple displacement time history. The prominent effects of two-

dimensionality can be illustrated by comparing seismograms calculated

for the homogeneous and the laterally heterogeneous models. Figure 20

94
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shows vertical and radial component seismograms (WWSSN response)

calculated for model S-2 with a ramp function displacement time history.

Comparison of selected seismograms for the homogeneous and laterally

heterogeneous calculations (models S-IA and S-2A) are shown in Figure

21. Both short period and long period WWSSN seismograms responses

are shown. The effects of inhomogenelty are prominent primarily in

later arriving phases on Z and R components of model S-2A and in the

large amplitude phase which is present primarily on the radial com-

ponent for model S-2A. Long period records also show considerable

difference in wave form due to the wave propagation and the complex

structure. The identical source is used for both of these models.

Comparison of the effects of differing source functions is

illustrated in the seismograms shown in Figure 22. All of these

synthetic seismograms are calculated for the identical homogeneous

half space model and identical fault geometry (Figure 16 and Figure

18). However, the source time history and slip functions illustrated

in Figure 18 were used for calculations S-lA, S-IB and S-lC. The

ramp source time history (S-lA) produces considerably more high

frequency wave propagation and more complex phase arrivals than for

the smoother slip function and time history calculations.

These calculations serve to illustrate the utility of the finite

difference method for application to earthquake problems in which the

source function is of significance and also to demonstrate the importance

of lateral heterogeneity in wave propagation for models of complex

geologic structure.

'A
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IMPLICIT FINITE DIFFERENCE SYNTHETIC SEISMOGRAMS CALCULATIONS

We have pursued the use of implicit numerical techniques in finite

difference formulations, in hopes of reducing both computer time and

storage requirements of existing predominately explicit formulations.

Implicit techniques, which involve centered-differences calculations

at each time step, have two potential advantages over explicit formulations.

Firstly, some of the implicit formulations are numerically stable for any

step size and grid spacing. This characteristic allows the length of

the time steps to be increased, thus decreasing the actual number of

time steps without any regard for stability. One must use caution in

increasing the size of the time step, however, to insure that the

accuracy is maintained. Secondly, another potential advantage of

implicit formulations is that some of the techniques are more accurate

than their explicit couterparts. Thus, a coarser grid spacing along

with a corresponding increase in time step size is afforded while

maintaining accuracy and stability for certain implicit formulations

with higher accuracy. In general, our experimentation indicates a

trade off between stability and accuracy of implicit formulations.

If both time steps and grid spacings can be increased, significant

savings In computer time and storage requirements may be possible

with implicit methods. For the most part our implicit studies have

utilized the simpler scalar (acoustic) wave equations. Experience

with these techniques indicates that further application to the elastic

wave equation may be warranted. However, additional problems, such as

the difficulty of applying absorbing boundary conditions to the more

complicated implicit formulas for the elastic case may diminish some of

the anticipated benefits of implicit formulas.

- . . *
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The principle disadvantage of implicit finite difference formulations

are primarily concerned with their complexity. Implicit calculations are

not as straight forward as their explicit couterparts (Figure 23 and

Figure 24). Implicit difference equations for two or three-dimensional

problems have to be broken down corresponding to two or three elements

using either an alternating direction implicit (ADI) or a locally one

dimensional (LOD) spliting technique. Each of these parts must be

solved inversely using a tri-diagonal matrix equation solver. These

equations are particularly difficult to formulate for a fully absorbing

boundary condition at the edges and bottom of the model, and for a free

surface boundary condition at the top of the model.

We have compared both with accuracy calculations and actual implicit

finite difference programs, a variety of implicit finite difference

techniques (Figure 25). The different formulas illustrated in Figure 25

have different accuracy and stability conditions and the complexity of

the formulas leads to differing degrees of difficulty in applying

boundary conditions source functions and other practical aspects of

producing a workable finite difference program for two-dimensional

seismic wave propagation problems.

One of our most significant experimental results has come from

comparing four different implicit formulations of the scalar wave

equation with an explicit formulation for accuracy. Our accuracy

criterian is derived from the numerical dispersion studies published

by Alford et al. (1974) and Emerman et al. (1982). However, we have

investigated the numerical dispersion effects of all the formulas shown

in Figure 25. Some of the results are illustrated in Figures 26 through

29. While some of implicit formulations prove to be less accurate than

the explicit case, the equations proposed by Fairweather and Mitchell

................................
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prove to be far superior. For example, one can see from the explicit

accuracy diagram shown in Figure 26 that in order to maintain reasonable

accuracy in an explicit solution, one must use approximately ten points

per wave length (1 = 0.1) in order to prevent significant numerical

dispersion. This ten points per wave length requirement, in addition

to the small times step required for stability, makes the explicit

case extremely costly in computer time and storage. The implicit

finite difference formula presented by Emerman, Schmidt and Stephen

(1982) does not have the stability requirement, however, one can see

from Figure 27 that a small time step is again required in order to

maintain reasonable accuracy. Further, the accuracy of the solution

decreases with increasing time step (increasing p value) making this

formulation rather undesirable because although the time step can be

increased and stability still maintained thus improving on computer

time, the grid spacing must be kept extremely small (greater than 10

points per wave length) in order to maintain accuracy. However, the

numerical dispersion accuracy curves (Figure 28 and Figure 29) for the

Fairweather and Mitchell (1965) formula show that this formula is far

superior. For this case, minimal dispersion is observed for as few as

four to five grid points per wave length (I = 0.2 to 0.25) and for a
G

variety of time step conditions (p = 0.1 to p = 0.7), thus one can

maintain reasonable accuracy with the Fairweather and Mitchell formula

with approximately twice as coarse of a grid spacing as for the explicit

or other implicit methods. For a two-dimensional model these conditions

result in a factor of four savings in computer storage and of eight

savings in computer time, because the time step can also be increased as

the grid spacing is increased. The Fairweather and Mitchell formula,

however, does have a stability limit, such that the time step can only
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be increased to p 0.7. Nevertheless, this potential savings in

computer time of approximately a factor of eight and a savings of

computer storage requirements of approximately a factor of four make

the Fairweather and Mitchell implicit formula worth investigating

further.

We have developed working programs using the implicit finite

difference formulation for the acoustic (scalar) wave equation. We

have used both the Emerman, Schmidt and Stephen implicit formulas as

well as the Fairweather and Mitchell formulas. Although further

analysis is required and detailed comparisons of accuracy, stability

and calculation time between the two implicit methods and the explicit

approach are required, we believe that the Fairweather and Mitchell

implicit finite difference method will be useful for further application

to synthetic seismogram calculation in two-dimensional models. We have

succeeded in applying relatively accurate non-absorbing boundary

conditions, at the edges of implicit models (Figure 30). However, the

higher order absorbing boundary conditions need to be applied to the

Fairweather and Mitchell formulas and these implicit techniques need to

be applied to the elastic wave equation case in order to fully realize

the benefits of implicit difference methods in two-dimensional synthetic

siesmogram calculation.

4.
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FIGURE CAPTIONS

Figure 1. Synthetic seismograms calculated for a plane layered shallow
oceanic model. The calculation includes the effects of elastic
wave propagation in the oceanic crustal layers beneath a 200
meter depth and acoustic wave propagation in the upper water
layer (200 meters thick). The frequency of the source is
approximately 10 Hz and the source depth is 100 meters. High
Q values (Qp = 1,000, 500, 1,000 are assumed for the water

layer, sedimentary layer and oceanic crustal and upper mantle
layers, respectively). Amplitudes are scaled for plotting by
multiplying the amplitude of each seismogram by the distance.

Figure 2. Synthetic seismograms calculated for an acoustic layered half-
space. The layer parameters are the same as for Figure 1.
Acoustic wave propagation is simulated in both the water
layer and the oceanic crustal and upper mantle layers. High
Q values, as in Figure 1, are assumed. The acoustic propagation
in the reflectivity program is simulated b;, the transformation
described by Kind, 1976. Some numerical noise in the calculation
is evident throughout the record section. The amplitudes for
this seismogram are scaled to one-half of the amplitudes shown
on Figure 1.

* Figure 3. Synthetic seismograms calculated for the identical oceanic
model as in Figure 1, except that low Q values are included
in the sedimentary layer and the upper oceanic crystal layer.
An elastic half-space beneath the acoustic water layer (thick-
ness of 200 meters) is assumed. Amplitude scaling is identical
to that shown on Figure 1.

Figure 4. Flow chart for the calculation of finite difference synthetic
seismograms for acoustic or elastic earth models using the
explicit finite difference formulation.

Figure 5. Illunstration of the computational technique for spatial and
temporal finite difference derivatives at a time T+l using
the surrounding displacement grid points at times T and T-l.

Figure 6. Schematic diagram illustrating the calculation of finite
difference synthetic seismograms for a two-dimensional earth
model. The velocity structure is approximated by a grid in
which the seismic velocity is given at each grid location.
Seismic waves are caused to propagate by a finite difference
time step calculation away from an arbitrarily located source
point. A free surface boundary condition and absorbing
boundaries at the fictitious edges of the model are included.
Seismometer locations record the displacement time history for
the wave propagation in the two-dimensional model.

* . .,.
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Figure 7. Two-dimensional equations of motion for displacement in
heterogeneous isotropic media and finite difference approximations
for the explicit finite difference formulation of second order
spatial derivatives, cross-product spatial derivatives and second
order time derivatives for approximations to the two-dimensional
equation of motion.

Figure 8. List of some of the practical aspects of explicit finite
difference synthetic seismogram calculation.

Figure 9. An example of finite difference synthetic seismogram calculation
in a laterally homogeneous media. Upper record section shows
synthetic seismograms calculated for a layer over a half-space
model using the modified reflectivity method. Lower record
Section shows synthetic seismograms calculated by the finite
difference technique for the identical model. The model
consisted of a 2 km thick 4.5 km/s layer overlying a 6 km/s
half-space. In the upper diagram, amplitudes are scaled by
distance squared. In the lower record section, amplitudes
are scaled by distance to the one power. The difference in
amplitude scaling corresponds to the difference in assumptions
of the two methods. In the modified reflectivity method,
a point source in a one-dimensional model represents three-
dimensional spreading of the wave energy. In the finite
difference model, however, a two-dimensional approximation
is assumed and the source is actually a line source.

Some differences in the later portions of the record
section are observable due to the fact that the surface
waves were not exactly included in this particular calculation
using the modified reflectivity method and also due to the
fact that because of the choice of grid spacing and time
step parameters in the finite difference calculation, some
numerical dispersion is included for shear wave and surface
wave propagation. However, the compressional waves for
primary and multiple reflections are correctly included in
both methods and a comparison of the two synthetic seismogram
record sections indicates that the finite difference seismograms
are nearly identical to the modified reflectivity method
seismograms.

Figure 10. Comparison of finite difference and modified reflectivity

synthetic seismograms for the layer over a half-space model
described in Figure 9. These seismograms illustrate a detailed
comparison of the synthetics at distances of 10, 20, 30 and
40 km from the source.

9'



22

Figure 11. Synthetic seismograms calculated for the modified reflectivity
and disk ray theory methods for a layer over a half-space
model including primary compressional waves, first order
multiples and selected P-S conversions. The DRT synthetics
are shifted slightly to the left of their proper distance
for convenient display and comparison with the MRM seismograms.
Amplitudes of the seismograms are scaled by distance to the
one power for convenient plotting.

Figure 12. Seismic raypaths for DRT calculation for fault model INFL-ll.

Figure 13. Seismic record sections for finite difference and disk ray
theory synthetic seismograms for fault model INFL-ll. Seismic
phases are identified for the raypaths shown in Figure 12.
Finite difference synthetic seismograms are scaled by multiplying
by distance to the one power, whereas the disk ray theory
synthetics are scaled by multiplying by the distance squared
to account for the difference in line source for the finite
difference program versus point source for the disk ray
theory program. Multiples and P-S converted phases are not
included for the disk ray theory calculation, but are included
in the finite difference model.

Figure 14. Comparison of finite difference and disk ray theory synthetics
for fault model INFL-11 for distances 10, 20, 30, 40 and
50 km. Phase notation is identical to that shown on the
raypath diagram (Figure 12).

Figure 15. Schematic diagram illustrating the grid geometry for finite
difference model calculations in a skew coordinate system
with a dislocation (earthquake) source.

Figure 16. Homogeneous half-space model for skew coordinate system
finite difference calculation. The source is a reversed
fault beneath seismometer location number 6. The source
time history is shown as an inset in the model. A unilateral
source is assumed with fracturing beginning at the lower
end of the fault plane.

Figure 17. A laterally inhomogeneous earth model, representing a
subduction zone, with identical geometry and source to
the homogeneous model shown in Figure 16.

Figure 18. Diagram illustrating the fault geometry slip functions and
source time histories for a variety of calculations using
the skew symmetric coordinate system finite difference
synthetic seismogram program.
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Figure 19. Schematic diagram illustrating the seismic raypaths which
produce prominent arrivals from a dipping fault source for
a ramp function displacement in the homogeneous half-space
model (Figure 16). Dashed raypaths indicate S wave pro-
pagation and solid raypaths indicate compressional wave
propagation. Unprimed phase notation indicates arrivals
from the starting phase of the source time history, whereas
primed phases are due to the stopping phase two seconds
after the initiation of fracturing. Subscript 1 indicates
arrivals from the point of initiation of fracture at the
bottom of the fault plane. Subscript 2 indicates arrivals
propagating from the top end of the fault plane.

Figure 20. Synthetic seismograms calculated for model S2 (Figure 17)
for vertical and radial component displacements. The
seismograms have been convolved with a seismograph response
function corresponding to a short period WWSSN response.
Seismograms are plotted as a function of distance from the
zero point directly above the point of initiation of the
earthquake source. Small numbers adjacent to the seismograms
indicate the seismometer position. Relative amplitudes are
constant for all seismograms and can be compared with the
relative amplitude scale shown at the bottom of the record
section.

Figure 21. Comparison of short period and long period seismograms for
models SIA and S2A at a distance of -6.1 km corresponding
to seismometer number 6. Both vertical (SPZ and LPZ) and
radial (SPR and LPR) seismograms are shown. The long period
records are scaled with a difference amplitude scale as
indicated at the bottom of the diagram.

Figure 22. Comparison of SPZ seismograms for the homogeneous half-space
fault model (Figure 16) with the three difference source
functions (IA, 1B, 1C) illustrated in Figure 18. The phase
notation is the same as illustrated in Figure 19. Dotted
lines indicate portions of seismograms with an enhanced
amplitude scale to see small arrivals. The amplitude scales
differ for each of the record sections and are scaled according
to the relative amplitude scale bar shown at the bottom of
each record section.

Figure 23. Equations used in calculating acoustic finite difference
synthetic seismograms using the scalar wave equation. An
explicit and an implicit finite difference form are illustrated
as well as second order finite difference operators.

Figure 24. Schematic diagram illustrating the method of propagation
of pressures at time N+l from times N and N-l using the explicit
finite difference form as well as a similar diagram illustrating
the same calculation using the implicit form.
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Figure 25. Five different finite difference schemes for explicit and
implicit finite difference calculations using the scalar
(acoustic) wave equation.

Figure 26. Accuracy diagram for the explicit acoustic wave equation.
The normalized phase velocity is a measure of the degree
of numerical dispersion present in the calculation for a
variety of grid spacings. The value of 1/G of 0.1 which
corresponds to 10 points per wavelength is normally considered
appropriate for explicit finite difference calculations to
maintain a negligible amount of numerical dispersion. The
calculation is for an angle of incidence with respect to the
grid axes of 00. The P values are relative to the time step
of the calculation where P = CO x AT/AX.

Figure 27. Accuracy diagram for the implicit formula given by Emerman,
Schmidt and Stephen (1982).

Figure 28. Accuracy diagram for the implicit finite difference equation
given by Fairweather and Mitchell (1965).

Figure 29. Accuracy diagram for the implicit finite difference formula
given by Fairweather and Mitchell (1965). In this case,
the P value is kept constant at 0.7 and the various angles
of incidence from 0 to 450 are assumed.

Figure 30. Displacement time history diagrams (snapshots) of an implicit
finite difference calculation in a homogeneous media in two
dimensions. The two-dimensional space and the displacements
are illustrated in a perspective view. The edges of the
perspective diagram correspond to the artifical edges of the
model. A non-reflecting boundary condition is assumed and
relatively small amounts of energy are reflected back from
the boundaries..4
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FLOW - CHART FOR FINITE DIFFERENCE SYNTHETIC
SEISMOGRAM CALCULATION FOR ACOUSTIC (*(x.z)) OR

ELASTIC (*(x.z). O(x.z), P(x.Z)) CASE

INPUT VELOCITY GRID
REPRESENTING TWO-
DIMENSIONAL EARTH
STRUCTURE
a(xz)..Bx.z). p(x.z)
-SET GRID SPACING

AND TIME STEP

DESIGN SOURCE FUNCTION
-LOCATION
-WAVELET SHAPE[-"-PEAK FREQUENCY

SET INITIAL DISPLACEMENTS=

SOLVE FINITE DIFFERENCE
EQUATIONS AT INTERIOR~GRID LOCATIONS FOR

DISPLACEMENTS u(X.Z), W(X.z)

INCREMENET

INDE x. zNP T

APL SPEIA BOUrDOARY COONDIUINS

SOETvANDT DISPLACEMENTSWT NTRMN

ASEISMOMETRM LOCATI
N

ONS

* Figure 4.
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TWO DIMENSIONAL EQUATIONS OF MOTION
FOR DISPLACEMENT

(HETEROGENEOUS, ISOTROPIC MEDIA)
8u. a ]x(a 4[,(a+ 8u)]

P T x =T Z e

P 2aw = 8 8.u +w 8w +8 8 (w + )]

WHERE: u(x, z) AND w(x, z) ARE DISPLACEMENTS

IN x AND z DIRECTIONS

a IS THE COMPRESSIONAL
VELOCITY

, -IS THE SHEAR VELOCITY

P IS THE DENSITY

FINITE DIFFERENCE APPROXIMATIONS

(EXPLICIT CASE)

SECOND ORDER SPATIAL DERIVATIVES

C3a(.z)!au(x, Z' 0)] { la2(m+-L, n) [u~m+1, n, I) - u(m. n. 1)]

a? a(m-4 .. n) [ um. n. 1) - u(m- I . n, 1)] }/(H)2

CROSS PRODUCT SPATIAL DERIVATIVES

-~a2 (x, Z) - U(x. Z. t01 {2 (M, n+ I) [uo+ I n+I I) u~m- 1 n+1 I]

-
2 (m, n-I) u(m+1 I n- I .I) -U(m- I , n-I .D]14&2

SECOND ORDER TIME DERIVATIVE

u(m, n. I+) I 2u(m. A, I) -u~n, n, I- ) + f Spatial derivatives]

WHERE- G2 (m t -. n) Cm-±1m n) + 02 (mn)]/

m AND n REFER TO THE x AND z DIRECTION

GRID POINTS AND I IS THE TIME STEP

Figure 7.
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PRACTICAL ASPECTS OF EXPLICIT FINITE DIFFERENCE
SYNTHETIC SEISMOGRAM CALCULATION

- TWO DIMENSIONAL APPLICATION

- SOURCE GENERATION

- FREE SURFACE BOUNDARY CONDITION

- ABSORBING BOUNDARIES AT EDGES OF MODEL

- STABILITY CONDITION (SMALL TIME STEP)

- ACCURACY CONDITION (SMALL GRID SPACING)

- NUMBER OF TIME STEPS (LENGTH OF SEISMOGRAMS)

- NUMBER OF GRID POINTS

- LARGE COMPUTER TIME AND STORAGE REQUIREMENTS

Figure 8.
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40
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50 ZCMPNN AMPWX, f2.0 (MRM)

COMPARISON OF FINITE DIFFERENCE (FD)
AND MODIFIED REFLECTIVITY METHOD (MRM)

SYNTHETICS FOR LAYER OVER
HALF SPACE MODEL

Figure 10.
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FINITE DIFFERENCE MODEL iN
SKEW COORDINATES

o FULL SECOND ORDER DERIVATIVES
* ABSORBING BOUNDARIES, SECOND

ORDER PARAXIAL APPROXIMATION
o] CORNERS, FIRST ORDER PARAXIAL

APPROXIMATION
* FREE SURFACE BOUNDARY CONDITION

I..

A DISLOCATION SOURCE GRID POINTS

Figure 15.
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EARTHQUAKE SOURCE DESCRIPTIONS FOR
FINITE DIFFERENCE SYNTHETIC PROGRAM (SYSMO)

FAULT SLIP SOURCE
.O.EL GEOMETRY FUNCTION TIME HISTORY

Sm Displacement

S-IA-2A REVERSE ' ,, 2s Tm
R E V: Time

S-2 A FAULT RISE TIME

(Rupture Velocity RECTANGULAR
-  3.0 KM/S) WEIGHTING RAMP FUNCTION

01 Sm Displacement

S-,B Same -42s, - Trme

RISE TIME
COSINE BELL

WEIGHTING COSINE FUNCTION

Sm Displocement

S-I C Same Same Time

RISE TIME
COSINE FUNCTION

.

Fg e1

Fiur -18.
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SEISMIC RAYPATHS FROM A DIPPING FAULT
SOURCE FOR A RAMP FUNCTION DISPLACEMENT

IN A HOMOGENEOUS HALF-SPACE MODEL

DISPLACEMENT FUNCTION

pit. pl.. $1, etc 1 (tW

2.P S.ec Dipaee t

Rise time

RA Y PA THS -- FP

Surface soimonmetera

, St. s. /sIP. s,,p

Sin ic'2t

Figure 19.
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COMPARISON OF SP AND LP
SEISMOGRAMS FOR MODELS

S- I A AND S-2A AT
X -- 6.1I KM (SEISMOGRAM 6)

S-IA S-IA
SPZ LPZ

S-2A~ M S-2A
SPZZ

S-IA S-IA
SPR LPR

S-ZA S-2A
SPR LPR

AMP 220 IAP200

*0 10 20 0 10 20
T (S) T (S)

Figure 21.
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SCALAR WAVE a?-U C_ (.2- a U
EQUATION at- ax a Z2

EXPLICIT 82  = P(8x.  z.  p
FINITE DIFF FORM

IMPLICIT 2U n P 8- + 8 - )(U+"+Un+U"
FINITE DIFF FORM 3 x + ii (2+ U)

At

WHERE: U n Pressure at: thus stop = n P= CoA
x coord - i

z coord - j

Second Order Difference Operators:

,,U+ -_ 2un + u _

82U" - - 2Un + U ji

,u- au + un -'

r 2u

Figure 23.
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EXPLICIT FINITE DIFF FORM

n- I n n+ I

j T i- I

j4-T

n+I n n-I 2 8 +2Un
Uij in2ui+UU =p (8 b iJ

IMPLICIT FINITE DIFF FORM

n- I n n+ I
x ,+

zA

t a

n '. ninlP +n

- U z7'2u+U..=-( 868 (U~+U..U

Figure 24.
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ABSTRACT

Synthetic seismograms for laterally inhomogeneous velocity and Q

structures can be calculated by the disk ray theory (DRT) method. Ray-

tracing through the model provides travel-time, distance, slowness and

ray amplitude data which are combined to synthesize seismic record sections

by DRT. The amplitude factors include geometrical spreading, attenua-

tion due to Q-I, reflection and transmission coefficients and the free

surface conversion coefficient. Comparison of DRT synthetic seismograms

with those calculated by the reflectivity method for a layer over a half

space model shows excellent agreement in both amplitude and waveform

character of all arrivals. Direct, reflected, P to S converted, multiply

reflected and head waves may be synthesized by the DRT method. In an

application of two-dimensional synthetic seismogram modeling using the

DRT method, synthetic seismogram record sections were calculated for

a complicated geologic model of the crust in the eastern Snake River

Plain, Idaho and compared with observed seismic data. In this application,

we find that a small modification of the Snake River Plain velocity model

which was interpreted from travel-time data produces seismograms which

compare well with the amplitude and waveform character of the observed

seismograms.

4. '
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INTRODUCTION

Modern crustal seismic refraction and reflection data recorded at

relatively small station spacings and of improved quality result in an

increased need for two-dimensional synthetic seismogram modeling tech-

niques for interpretation. Both wave-theoretical and ray-theoretical

methods have been used for the calculation of synthetic seismograms.

Wave methods are generally restricted to one-dimensional velocity models,

although finite-element and finite-difference techniques allow calculation

in two- and three-dimensional structures. In general, wave-theoretical

techniques applied to two-dimensional synthetic seismogram calculations

provide highly accurate results but are limited in their practical applica-

tion due to the extensive cost and computer resources required for their

calculation. In contrast, ray-theoretical methods provide only approxi-

mate calculations and are limited in their ability to simulate wave propaga-

tion effects, but are computationally efficient. In this paper, we briefly

describe a modification of the disk-ray theory method (Wiggins, 1976)

for calculation of synthetic seismograms in two-dimensional velocity

structures and present an example of its application to modeling of a

complex geologic model in the eastern Snake River Plain area of southern

Idaho. The method is reasonably accurate, is efficient to use for modeling

purposes, and is capable of calculating seismograms for complex two-

dimensional geologic structures.

A variety of synthetic seismogram modeling techniques have been

developed for application to laterally inhomogeneous velocity structures.

Cerveny et al. (1977) and Cerveny (1979) present a theoretical discussion

"" and results of model studies of asymptotic ray theory (ART) calculations.

of the amplitudes of seismic waves propagating through an inhomogeneous

velocity structure approximating the waves by a series of rays. McMechan

".- . . -'.." ..- . - -. - . -" - . : - .". . -, - - -. -.- .."- . -? -. -. . ° '. -- .- - . ." - - /
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and Mooney (1980) described a modified version of ART and showed an applica-

tion to modeling of observed crustal seismic data for the Imperial Valley,

California. Hong and Helmberger (1978) have utilized a ray theory method

known as glorified optics to compute synthetic seismograms for primary

and multiple reflections for some homogeneous layer models including

non-planar boundaries. Frazer and Phinney (1980) have described the

theoretical background for a generalized phase integral method which

can be applied to generation of synthetic seismograms in laterally inhomo-

geneous media. Wiggins (1976) and Wiggins and Madrid (1974) have developed

a ray method for the generation of synthetic seismograms in which the

effects of wave propagation are simulated by individual rays in which

the propagation can be thought of as consisting as 'disks' of energy

traveling along the raypath. Each disk, which is perpendicular to the

raypath, intersects the surface and affects an area surrounding the point

of emergence of the ray. Chapman (1976) described a first motion approxi-

mation which is formally equivalent to the disk ray theory technique.

All of the above mentioned techniques are based on ray-theoretical

solutions to the elastic wave equation in two-dimensional media. They

provide only approximate solutions for particular wave propagation phenomena

and are limited in their ability to simulate wave propagation for all

types of wave motion and under all geometrical conditions of velocity

structure. For example, it is well known that ray theoretical techniques

are inaccurate in the area of a caustic or turning point of the seismic

rays and have difficulty in the generation of pure head waves. Furthermore,

ray techniques" are generally limited to body wave propagation problems.

More exact wave propagation synthetic seismogram techniques generally

involve a direct numerical solution to the elastic wave equation in two-

dimensions. Finite difference approximations for this purpose have been

used by Boore (1972), Alford et al. (1974) and Kelly et al. (1976)

• ~~~~..... . .. -..- ... _.-... . .,,.-.. . -,- ., -.. . ,, . -. ,i -.... . .... ... .,. -. ,.,.-.- :_
-" 'T :''" ' W '" "1 " " - .---- , - - - - --'- - - - - - - - . .
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and finite element methods are described by Smith (1975). Because these

techniques represent complete solutions to the wave equation, the finite

difference and finite element synthetic seismogram methods are accurate

and provide complete seismograms including all types of wave phenomena

in both homogeneous and inhomogeneous velocity structures. However,

large requirements of computer time and storage for these techniques

preclude their use for routine modeling of two-dimensional seismic wave

propagation.

DISK RAY THEORY METHOD

The disk ray theory (DRT) method that we have employed follows the

theory of Wiggins and Madrid (1974) and Wiggins (1976). They presented

a theoretical discussion of the DRT method based on ray approximations

to wave propagation in laterally homogeneous media and pointed out the

possibility of utilizing such techniques for laterally inhomogeneous

media where ray tracing results would provide the necessary travel time

and amplitude information for constructing DRT synthetic seismograms.

The DRT method that we have utilized is briefly described below. For

a discussion of the theory of the DRT method the reader is referred to

Wiggins and Madrid (1974) and Wiggins (1976). The ray tracing data required

for DRT synthetic seismogram synthesis follows the ART techniques of

Cerveny and Ravindra (1971) and Cerveny et al. (1977).

The first step in DRT synthesis for two-dimensional wave propagation

is to calculate travel-time and amplitude factors for seismic raypaths

propagating for phases of interest through the velocity structure. For

this purpose, we utilize the 'shooting method' of ray tracing in which

NJ rays are traced by iterative application of the generalized Snell's Law

through the two-dimensional velocity structure from a source location

given an initial angle of incidence. The ray may refract or reflect

a, m
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at boundaries and may include propagation through homogeneous or vertically

and laterally inhomogeneous layers. The velocity structure in our models

is given by layers of constant or slowly varying seismic velocity separated

by irregular interfaces. Alternatively a continuously varying velocity

structure with vertical and lateral gradients can be approximated by

a two-dimensional grid of seismic wave velocities. Attenuation factors

W I ) are also given for the model. The seismic velocity model utilized

employs a flat earth convention and thus we provide for small positive

velocity gradients within homogeneous layers to simulate the effects

of earth curvature according to the earth flattening transformation (Aki

and Richards, 1980, p. 463-465). Using only this small positive velocity

gradient within homogeneous layers corresponding to the earth flattening

transformation (apprbximately 0.001 km/sjlkm) raypaths corresponding to

pure head wave propagation can be generated.

The ray tracing through the two-dimensional velocity structure provides

travel time, distance, raypath parameter (slowness) and an amplitude

factor for each seismic ray for input into the DRT synthesis program.

The amplitude factor includes the amplitude effects of geometrical spreading,

reflection and transmission coefficients at interfaces, a free-surface

conversion factor and attenuation due to absorption. The attenuation
N AT.

is calculated from an exponential amplitude weighting factor (Exp(-rf Z
i=l

according to the travel-time spent within each Q layer. The attenuation due to

absorption is approximated by this exponential absorption factor corresonding

to the dominant frequency of the wavelet which will be used for the synthetic

seismogram generation. Thus, it is a 'single frequency Q' approximation,

and results in attenuation of the amplitude of propagated waves, but

does not result in frequency dependent changes in waveform.

A flow chart shown in Figure l and a schematic diagram shown in

Figure 2 illustrate the process of ray tracing and DRT seismogram synthesis
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for a two-dimensional velocity model. Ray tracing through the velocity

structure provides time, distance, raypath parameter and amplitude factors

(ti, xi' Pi and ai) which can be used to generate a travel time curve

for all of the phases of interest which are included in the ray tracing.

DRT synthesis sums the contributions of individual amplitudes for raypaths

in the vicinity of the desired seismogram location for all branches of

the travel time curve and finally convolves the amplitude time series

with a desired wavelet to produce individual seismograms. Repeating

the amplitude summation for all distances of interest produces the seismic

record section. The diagram shown in Figure 2 illustrates this process

for a single seismogram at a distance x0. In order to synthesize this

seismogram by the DRT method, the time, distance, amplitude and raypath

parameter values for the individual raypaths are generated by ray tracing

through the velocity model. For each seismic phase (branch of the T-X

curve), the amplitude contributions of individual raypaths are projected

from their arrival time (using the slope equal to the raypath parameter)

to the distance corresponding to the seismogram location xO. Thus, seismic

energy corresponding to raypaths arriving in the vicinity of the distance

x0 contribute to the amplitude of the arrival at the distance xO. Distance

and time weighting factors are utilized to prevent strong arrivals from

large distances far away from the seismogram location being projected

into the seismogram and contributing fictitious amplitude. Although

the distance and time weighting factors are chosen arbitrarily, we have

found that the process is not very sensitive to the choice of these weighting

factors. The 'distance factor that we use generally corresponds to about

2 to 4 seismic wavelengths and the time window is approximately one period

of the dominant frequency of the wavelet. After the individual amplitude

contributions of each raypath are considered for each of the possible

branches of the travel time curve within the distance given by the distance
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weighting window, the individual time versus amplitude spikes are con-

volved with the wavelet to produce the DRT synthetic seismogram.

MODEL STUDIES

In order to test the DRT method, the vertical component displacement

theoretical seismograms (Figure 3) were computed at the surface of a

model consisting of a homogeneous layer over a half space for an explosive

point source at a depth close to the surface. The result is compared

with modified reflectivity method (MRM) given by Kind (1978).

The velocity depth model was chosen arbitrarily for convenience

so that all the major arrivals could be separated clearly. For the MRM

seismograms, shear wave velocities and densities for layers of the model

were computed from the ?-wave velocities assuming a Poisson's ratio

a = 0.25. Densities were computed from pi = 0.252 + 0.3788 ai (Birch,

1964). The effects of attenuation on body waves is included by introducing

complex velocities (Braile, 1977).

For the DRT method, the Q-1 factor which is dependent on a single

predominant frequency, surface conversion coefficients (Cerveny and Ravindra,

1971), geometrical spreading, and reflection and transmission coefficients

were taken into account in the amplitude calculation. For simplicity,

only direct waves and primary P wave reflections with corresponding head

waves are considered in the ORT seismograms. Later arrivals including

multiple reflections are identified on the record section for the MRM

seismograms. Amplitudes of both the DRT and MRM seismograms were multiplied

by distance for convenient plot scaling,

Figure 3 shows theoretical seismograms computed by both the MRM

and the DRT methods. The structure is a homogeneous layer over a half

space with only the earth flattening transformation applied, For this

case, ray-theoretical methods generally fails to predict the head waves,

" ' ''' ' "o "' " " "- "i" '.. . . .. . . . . . . .. ..... . . . . -" - " " ' -i 
- k - - n ' - W - - ' - h 1 J - ' '
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but in our DRT computation, the head wave can be predicted and the relative

amplitude and waveform character agree with the theoretical seismograms

computed by the MRM. The major difference is in the critical point region

(near 10 km) where the amplitude for the DRT method is larger than for

the MRM, and the phase is distorted. This is due to the fact that wave

theory predicts that the phase change due to reflection varies gradually

in the near-critical region, whereas ray theory predicts that the phase

shift for reflections begin abruptly at the critical distance. Although

minor differences are apparent, comparison of the amplitude and waveform

characteristics for the DRT and MRM synthetic seismograms shown in Figure

3 indicates that the DRT method is capable of accurate and efficient

synthetic seismogram calculations.

APPLICATION TO MODELING OBSERVED SEISMIC RECORD
SECTIONS FROM THE SNAKE RIVER PLAIN AREA

Sparlin et al. (1982) have interpreted a 136 km reversed seismic

line in the eastern Snake River Plain, Idaho (SP 7 SE in the northern

Rocky Mountains province to the Gay Mine shotpoint located in the Basin

• Zand Range province) using ray-trace travel-time modeling. The velocity

structure determined by Sparlin et al. (1982) is shown in Figure 4 along

with the raypaths of principal refracted and reflected phases.

In this section, we compute the corresponding synthetic seismograms

for the Sparlin et al. (1982) model and our modified model using DRT

for the shotpoints (SP 7 SE and Gay Mine) at the ends of the velocity

model. Observed and synthetic (DRT) record sections for the Snake River

Plain model are shown in Figures 5 and 6. The synthetic seismograms

calculated for the model proposed by Sparlin et al. (1982) based on travel-

time modeling (Figure 4) display amplitude characteristics for phase E

(Figures 4, 5 and 6) which do not match the observed data. A small

. T. .'-" "- '.
' .
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modification to the Snake River Plain velocity model (Figure 7) results

in synthetic seismograms which match very closely the amplitude and even

waveform character of the observed data for both the SP 7 SE (Figure

5) and Gay Mine (Figure 6) shotpoints. For example, the A, B, C phases

(Figure 5) show the expected travel time delay due to block faulting.

Large amplitude arrivals are calculated near 65 km in the D phase and

from 60 to 110 km for the F phase (Figure 5). The very weak amplitude

of phase E is seen on the synthetics for the modified model as observed

on the real data.

In order to illustrate the importance of two-dimensional synthetic

seismogram modeling such as for the Snake River Plain example (Figures

5 and 6), we computed MRM synthetic seismograms for a plane-layered model

(laterally homogeneous) which approximately fits the travel times of

th observed SP 7 SE and Gay Mine data. Although the arrival times match

reasonably well, the amplitude and waveform character of these synthetics

(Figure 8) display a poor comparison to the observed SP 7 SE and Gay

Mine record sections. The excellent match of the two-dimensional DRT

synthetics with the observed data and the inability to fit the observed

data with a laterally homogeneous model provides confirmation of the

complex velocity model beneath the eastern Snake River Plain. Additionally,

this example illustrates the importance of amplitude data and synthetic

seismogram modeling for detailed and accurate interpretation of crustal

velocity structure.

DISCUSSION AND CONCLUSIONS

Comparison of the synthetic seismograms computed with the DRT method

with those of the reflectivity method have shown that the DRT method

is efficient and reasonably accurate. The method can be applied to complex

two-dimensional velocity and Q structures. Application to modeling

. . . .. .. .... . .. .. . .. . . . . . -__... l - '
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observed seismic refraction data for the eastern Snake River Plain has

illustrated the significance of two-dimensional synthetic seismogram

techniques and the utility of the DRT method. Modern refraction/wide-

angle reflection data for crustal seismic studies will necessitate increased

*use of modeling techniques capable of laterally inhomogeneous velocity

structure. Although the DRT method is an approximate technique and is

some what restricted in its application, its efficiency and accuracy

make it suitable for routine modeling of data in laterally inhomogeneous

applications. The principal limitation that we have found with the DRT

technique is the inability to trace rays through some complex geologic

structures. This restriction is more a limitation of the ray tracing

method than of the DRT seismogram synthesis.

V.
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FIGURE CAPTIONS

Figure 1. Flow chart illustrating the process of calculation of synthetic
seismograms by the disk-ray theory method.

Figure 2. Schematic diagram illustrating the calculation of synthetic
seismograms by the disk-ray theory method. Upper diagram shows
a travel time curve with a seismogram synthesized at the distance
xq. Middle diagram illustrates the velocity model with compres-
sional wave velocities (a) and attenuation factors (Q) described
by a two-dimensional model including non-planar interfaces.
Raypaths for direct, reflected and refracted waves through
the velocity model are illustrated. Lower diagram illustrates
the process of DRT amplitude synthesis in which the amplitudes
for rays for a given travel time branch are added by projecting
their time of arrival along the travel time curve and applying
both distance and time weighting factors to the amplitude con-
tributions of each raypath. The response at the distance x
is the sum of the weighted responses of each raypath for each
travel-time branch projected to the appropriated arrival time.
Convolution of the individual projected ray amplitudes with
a source wavelet completes the disk ray theory seismogram synthesis.

Figure 3. Synthetic seismogram record section calculated using the modified
reflectivity method (MRM) and disk ray theory (DRT) method for
a plane homogeneous layer overlying a half-space. The single
layer is 5 km thick with a velocity of 4.5 km/s overlying -
half-space of velocity 6.8 km/s. Q values are 150 and 500 for
the layer and half-space respectively. The DRT seismograms
are displaced slightly to the left of the correct distance in
the plot for clarity. The ray diagrams at the bottom of the
figure illustrates the notation for the travel time branches.

Figure 4. Crustal model interpreted by Sparlin et al. (1982) for the eastern
Snake River Plain in Idaho. The raypathsfor a variety of refracted
(upper diagram) and reflected (lower diagram) phases are shown.
Numbers are compressional wave velocities in km/s. The datum
is 1.2 km elevation. The location of shotpoint 7 and the Gay
Mine shotpoint are at the northwest and southeast ends of the
model, respectively. NRM is northern Rocky Mountains province;
SRP is the Snake River Plain province; and BR is the Basin and
Range province.

Figure 5. Observed and synthetic seismograms for the SP 7 SE profile across
the velocity structure shown in Figure 4. Upper diagram shows
the synthetic seismograms calculated by the DRT method for the
Sparlin'et al. (1982) model (Figure 4). Middle diagram illus-
trates t'e i7mplitude-corrected observed data for the SP 7 SE
profile recorded during the Y-SRP 1978 experiment. Lower diagram
shows the synthetic seismograms calculated by the DRT method
for the modified SP 7 SE model (Figure 7). The amplitudes for
all of the seismograms shown in this figure are scaled with
a distance factor of amplitudes times distance to the 1.5 power
for convenient amplitude scaling. The phase notation shown
in the middle seismic section corresponds to the phases illus-
trated in Figure 4.
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Figure 6. Observed and synthetic seismograms for the Gay Mine shotpoint
(Figure 4). Upper diagram illustrates the synthetic seismo-
grams calculated by the DRT method for the Gay Mine shotpoint
and the velocity structure shown in Figure 4. Middle diagram
shows observed data from the Gay Mine shotpolnt. Lower diagram
illustrates synthetic seismograms calculated by the DRT method
for the modified Gay Mine model (Figure 7). All of the seismo-
grams in these record sections have been scaled with the identical
scaling factor of amplitude times distance to the 1.5 power
to provide for convenient plot scaling.

Figure 7. Velocity structure for the modified eastern Snake River Plain
model. The principal modification of this model as compared
to the Sparlin et al. (1982) model illustrated in Figure 4 is
a flattening ofih-lnterface separating the 6.53 km/s layer
from the 6.15 km/s layer beneath the Snake River Plain (SRP).
This modification to the velocity structure primarily affects
calculation of the phase E (Figure 4) for which raypaths are
illustrated. Numbers in parentheses are Q values used in the
DRT calculations for the SP 7 SE and Gay Mine synthetic seismo-
grams (Figures 5 and 6) and are based on the Q values interpreted
by Bralle et al. (1982).

Figure 8. Synthetic seismograms calculated by the modified reflectivity
method for a plane layered structure whose travel times approxi-
mate the observed travel time data for the SP 7 SE and Gay Mine
observed record sections. The velocity and Q structure are
illustrated in the left hand diagram. Amplitudes of the seismo-
grams are multiplied by distance to the 1.5 power for convenient
plot scaling.



}1
73

FLOWCHART FOR DISK RAY THEORY

SYNTHETIC SEISMOGRAM CALCULATION

MODEL
a(cX.Z)

SOCX, Z)
C ispt)

-" 4

IRAY - Tx
-3 TRACING RVE

• -A"]

output )FACTORS

IDRT
SYNTHESIS

LM- jWAVELETj

SSEISMIC

- ~RECORDO' SECTION]J

Figure 1

V. . . . . . -. . . . .-. . ... :.,,...- -.. ,:.,". . . -... ..--- , - . --- . . .. / = , . ... : "L._



.74

T SeaoISDrlam after DRT
synthesis for &Il branches

LU and convolution with wavulet

KO T-X Branch

S. x

Source ... K Kp K3 K4 )C
LU

~ ~ ...:::.-Raypath KI

a OfZ)
- tweet a0C4 Z)

Reflected
*..Retracted tc

> z (Ka Sranch)

CO Travel time curve
xU ADistance weighting
I--

CO

Xt X0XK,& X*

Amplitude of each raypath projected
along slope sPI, weighted and summed
to synthesize respoes at distance X0

Figure 2



- i n . .lt. - -- -. n. - * -, L - - - . - -

75

0- DISKI NO GRADIENT
0 - DRT

5- - MRMi 4- -0-500. -

... P"FRER Q6.25
_ 0 AMP.X@UbO :1 .

€0 ,-CO 3 -" (K M S ) '=a .= -

x
o-.

Pa

0 5 10 15 20 25 30 35 40
X (KM)

". !x z7

Figure 3

%.,

L , . . .,.... .... ,. ..- .. * *,. •..:. .- ,...'.,,. ...... - .. ,..'* "....',,-. ;,:'. .. -,,.

:'*'i ':iI 
: '

"( . . . . . .. . . . . . . ..-. .... . . . . . . . .i - i i " - . . .. l ' i i i' ='I " i



76

NW SE

3 Sh

0 60.15
6.53 (.53

20 68

* Figre 0

------------------------



4 ,77

4-
SPARLIN ET AL (1982)
SP 7'SEt MO6ELI
PEAK 0RQ3O
A PoXSoI.5

x

I- 1--

0 .50 100

-SRP 19=8
3 SP7 SE OBSERVED DATA

G

0 50 100

MODIFIED

.4.. SP7 S E M O EL

0

0 50 100
*X ( KM)

Figure 5



-7- . .

78

N4
SPARN UALn (1982)

S' AY MINE MODE
PEAK FS1k8J3.00 -3

- 0

Wl- 
SE

197

eP G YMINE J S T

I,-

F.. 0

SPMINE MODEL -3

-2

20

100 50 0
X (KM)

Figure 6



719

-

5.0000

50-61530 15(00

X kin)

Figure 7



80

4-

0- 0*300 -- -K--- PLANE LAYEREDMOE

5 300 -

0 
-

-

> 6
20- - I- - - - ----- -- ---

- 500-0

4 6 8 0 5010
V CKM/S) X CKM)

Figure 8



FILMED

9-83

I G


